节能案例
高亮度LED太阳能路灯照明系统设计
来源:电源网
在传统的太阳能路灯系统中,通常经过防电流倒灌二极管将太阳能板与蓄电池直接相连,这将导致太阳能板的利用效率低,同时容易使蓄电池长期处于欠充满状态,造成其使用寿命的缩减。本文在研究太阳电池电路模型的基础上,提出了一种数模混合的最大功率点追踪(MaximPowerPointTracking,简称MPPT)策略,它可最大程度地利用太阳能,同时对固态光源LED的驱动电路做了研究,最后用实验验证了该方案的高效性和实用性。
一、引言
随着固态光源的发展,LED的应用已不再仅仅局限于指示灯领域,它凭借寿命长,光效高等优点在现代照明体系中日益凸现优越性。伴随着光伏技术的发展,大功率高亮度LED更以其高效、节能而进一步引起了社会各界对该光源的广泛关注。但目前,LED太阳能路灯还存在因灯驱动电路导致LED光衰现象及太阳能利用率不高等不足。业界普遍认为LED的恒流驱动对抑制光衰效果显着。
传统的太阳能路灯充电系统中,通常经过防电流倒灌二极管将太阳能板与蓄电池直接相连,这将导致太阳能板的工作点偏移最大功率点(MaximPowerPoint,简称MPP),而未有效利用太阳能板的可输出功率;同时容易使蓄电池因供能不足而长期处于欠充满状态,造成寿命缩减。本文在研究太阳电池电路模型的基础上,分析了恒压追踪、扰动观察等最大功率追踪(MPPTracking,即MPPT)法,提出了一种数模混合的MPPT策略,它可使太阳电池的输出稳定在MPP附近,从而有效利用了太阳能板可输出的最大功率。
二、太阳电池的电路模型
图1示出太阳电池的电路模型。通常,材料内部的等效并联电阻Rsh值大,而材料内部的等效串联电阻Rs值很小。
三、电路工作原理
目前,市场上绝大部分太阳能路灯都是通过防电流倒灌二极管将蓄电池与太阳能板直接相连以充电的。图3示出传统的充电电路。
因此,输出功率和D的关系与图2中的P和U关系相似。从而可通过扰动D,实现输出功率的变化,并寻找出MPP.由于输出电压即蓄电池的充电电压短期内变化不大,在进行D扰动寻找MPP期间可近似认为恒定,因此输出功率的大小直接反应在输出电流即蓄电池的充电电流上,通过采样该充电电流值,从而判断出输出功率随D扰动的变化情况,以便进行MPPT.为了提高控制精度和驱动能力,单片机与开关管间加入了D/A转换和PWM芯片,图4示出其主电路拓扑。
四、最大功率点追踪(MPPT)
电路寻找MPP的工作原理可简述为:通过不断改变开关管驱动信号的D,直至蓄电池的充电电流达到最大,此刻即可认为太阳电池的输出功率达到最大,实现太阳电池的最大功率点追踪。在寻找MPP过程中,根据D的扰动情况,输出功率有3类模式,对应9种大小关系。
通过实验发现,在晴日里不同时刻的MPP处,电路工作的D均变化不大。因此,为了避免搜寻过程中造成寻找时间太久及带来的能量浪费,下一时刻进行MPP追踪的搜寻起点设定为上一次MPP时的D值。
五、MPPT策略实验结果
主电路的工作频率为100kHz,当搜寻到输出电流达到最大时,即认为该点为电路工作的MPP,图7示出此刻的驱动信号Ugs实验波形。可见,此时开关管的D≈0.65,这与理论分析结果很吻合。表1给出由上述分析得到的传统电路与MPPT电路的对比性试验结果。
由表1可见,传统太阳能充电电路中,15W的Parr最大值出现在早上温度不高、光照比较强的时刻,但此时的利用率仅仅约为68.4%;而采用带有MPPT功能的DC变换电路后,输出功率明显上升。
六、结论
LED灯的恒流驱动,对抑止光衰现象起到了很有效的作用;通过数模混和的方法,避免了单纯数字控制所带来的控制精度不高等问题,且单片机的智能控制,使得能够较快的寻找到最大功率点,提高了太阳能板的利用率及整个路灯照明系统的性能价格比。